Pokeweed antiviral protein depurinates the sarcin/ricin loop of the rRNA prior to binding of aminoacyl-tRNA to the ribosomal A-site.
نویسندگان
چکیده
Ribosome-inactivating proteins, such as the pokeweed antiviral protein (PAP), inhibit translation by depurinating the conserved sarcin/ricin loop of the large ribosomal RNA. Depurinated ribosomes are unable to bind elongation factor 2, and, thus, the translocation step of the elongation cycle is inhibited. Though the consequences of depurination are well characterized, the ribosome conformation required for depurination to take place has not been described. In this report, we correlate biochemical and genetic data to conclude that pokeweed antiviral protein depurinates the sarcin/ricin loop when the A-site of the ribosomal peptidyl-transferase center is unoccupied. We show that prior incubation of ribosomes with puromycin, an analog of the 3'-terminus of aminoacyl-tRNA, inhibits both binding and depurination by PAP in a concentration-dependent manner. Expression of PAP in the yeast strain mak8-1 results in little depurination unless the cells are lysed, a process that would promote loss of aminoacyl-tRNA from the ribosome. The mak8-1 strain is known to exhibit a higher affinity for aminoacyl-tRNA compared with wild-type cells, and therefore, its ribosomes are more resistant to PAP in vivo. These data contribute to the mechanism of action of pokeweed antiviral protein; specifically, they have uncovered the ribosomal conformation required for depurination that leads to subsequent translation inhibition.
منابع مشابه
Binding interactions between the active center cleft of recombinant pokeweed antiviral protein and the alpha-sarcin/ricin stem loop of ribosomal RNA.
Pokeweed antiviral protein (PAP) is a ribosome-inactivating protein that catalytically cleaves a specific adenine base from the highly conserved alpha-sarcin/ricin loop of the large ribosomal RNA, thereby inhibiting protein synthesis at the elongation step. Recently, we discovered that alanine substitutions of the active center cleft residues significantly impair the depurinating and ribosome i...
متن کاملPokeweed antiviral protein cleaves double-stranded supercoiled DNA using the same active site required to depurinate rRNA.
Ribosome-inactivating proteins (RIPs) are N-glycosylases that remove a specific adenine from the sarcin/ricin loop of the large rRNA in a manner analogous to N-glycosylases that are involved in DNA repair. Some RIPs have been reported to remove adenines from single-stranded DNA and cleave double-stranded supercoiled DNA. The molecular basis for the activity of RIPs on double-stranded DNA is not...
متن کاملGeneration of pokeweed antiviral protein mutations in Saccharomyces cerevisiae: evidence that ribosome depurination is not sufficient for cytotoxicity.
Pokeweed antiviral protein (PAP) is a ribosome-inactivating protein that depurinates the highly conserved alpha-sarcin/ricin loop in the large rRNA. Here, using site-directed mutagenesis and systematic deletion analysis from the 5' and the 3' ends of the PAP cDNA, we identified the amino acids important for ribosome depurination and cytotoxicity of PAP. Truncating the first 16 amino acids of PA...
متن کاملCleavage of the sarcin–ricin loop of 23S rRNA differentially affects EF-G and EF-Tu binding
Ribotoxins are potent inhibitors of protein biosynthesis and inactivate ribosomes from a variety of organisms. The ribotoxin alpha-sarcin cleaves the large 23S ribosomal RNA (rRNA) at the universally conserved sarcin-ricin loop (SRL) leading to complete inactivation of the ribosome and cellular death. The SRL interacts with translation factors that hydrolyze GTP, and it is important for their b...
متن کاملA novel interaction of pokeweed antiviral protein with translation initiation factors 4G and iso4G: a potential indirect mechanism to access viral RNAs
Pokeweed antiviral protein (PAP) is a ribosome inactivating protein recognized primarily for its ability to depurinate the sarcin/ricin loop of the large rRNA. Studies have demonstrated that PAP also depurinates other RNA templates, such as Human immunodeficiency virus-1 RNA and Brome mosaic virus RNAs. However, the mechanism by which PAP accesses viral RNAs is not known. Considering that PAP w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- RNA
دوره 12 9 شماره
صفحات -
تاریخ انتشار 2006